• 登录
Skip to content

一起大数据-技术文章心得

一起大数据网由数据爱好者发起并维护,专注数据分析、挖掘、大数据相关领域的技术分享、交流。不定期组织爱好者聚会,期待通过跨行业的交流和碰撞,更好的推进各领域数据的价值落地。

Menu
  • 首页
  • 大数据案例
  • 数据&电子书
  • 视频
    • Excel视频
    • VBA视频
    • Mysql视频
    • 统计学视频
    • SPSS视频
    • R视频
    • SAS视频
    • Python视频
    • 数据挖掘视频
    • 龙星计划-数据挖掘
    • 大数据视频
    • Machine Learning with Python
  • 理论
    • 统计学
    • 数据分析
    • 机器学习
    • 大数据
  • 软件
    • Excel
    • Modeler
    • Python
    • R
    • SAS
    • SPSS
    • SQL
    • PostgreSQL
    • KNIME
  • 技术教程
    • SQL教程
    • SPSS简明教程
    • SAS教程
    • The Little SAS Book
    • SAS EG教程
    • R语言教程
    • Python3教程
    • IT 技术速查手册
    • Data Mining With Python and R
    • SAS Enterprise Miner
  • 问答社区
  • 我要提问
Menu
SPSS操作:问卷的信度分析『克朗巴哈系数(Cronbach's α)』

SPSS操作:问卷的信度分析『克朗巴哈系数(Cronbach’s α)』

Posted on 2019年4月23日

from https://www.sohu.com/a/204514060_489312

信度最早由斯皮尔曼(Spearman)于1904年将其引入心理测量,指的是测验结果的一致性程度或可靠性程度。根据所关心的重点不同,信度可分为内在和外在信度两类。

内在信度指调查表中的一组问题是否测量的是同一个概念,也就是这些问题之间的内在一致性如何。最常用的内在信度指标为克朗巴哈系数和折半信度。最常用的外在信度指标是重测信度,即用同一问卷在不同时间对同一对象进行重复测量,然后计算一致程度。[1]

今天这篇文章,我们就来讲一讲克朗巴哈系数的SPSS分析过程。

1、问题与数据

某研究者为测量员工的工作动力、自主性、热情和忠诚度设计了一个问卷,共包含25个题目。其中,第20-25题测量的是员工的工作热情。在调查了315位员工之后,该研究者拟分析测量工作热情的这6个题目的一致性,部分研究数据如下:

本研究中,每一个题目都是根据Likert 7级量表进性测量的,Variable View窗口展示如下:

每个题目的赋值情况如下:

2、对问题的分析

在实际研究中,很多事物/态度是不能直接被测量的,研究者们常设计一组题目间接反映它们的真实情况。但这些题目是否可以实现研究目的,就需要我们通过统计手段进一步分析了。如在本研究中,研究者设计了间接测量员工工作热情的6个题目,并希望判断它们的一致性。针对这种情况,我们可以使用Cronbach’s α分析。

解释:Cronbach’s α分析主要用于评价连续变量和有序分类变量的一致性,适用于本研究的研究数据。

3、SPSS操作

(1) 在主菜单点击Analyze→Scale→Reliability Analysis

出现下图:

(2) 将变量Qu20- Qu25放入Items框内

(3) 设置Model为Alpha。一般SPSS的默认设置为Alpha,若不是,应人为设置

注释:Scale label是在结果输出的时候,给这一组一致性检验添加的标签。如果我们需要同时进行多组检验,我们一般需要添加标签以示区分。但在本研究中我们只检验工作热情一组变量的一致性,并不需要添加标签。

(4) 点击Statistics

(5) 在Deives for中点选Item,Scale和Scale if item deleted;在Inter Item中点选Correlations

(6) 点击Continue→OK

4、结果解释

4.1 总体结果

SPSS输出的Cronbach’s α检验结果包括很多。其中,第一个表格为Case Processing Summary,如下:

从表中可以看出,本研究共有315例有效数据(“Valid”行),没有缺失(“Excluded”行),总样本量为315例(“Total”行)。

Cronbach’s α系数的结果如下:

本研究中测量员工工作满意度的Qu20-Qu25(共6条,“N of Items”)条目的Cronbach’s α系数值为0.823,提示这6个题目具有较高的内在一致性。

一般来说,条目的一致程度与测量内容有关,Cronbach’s α系数值越大提示内在一致性越强。既往研究认为,Cronbach’s α系数大于0.7,可认为条目之间的一致性较好。

注释:标准化Cronbach’s α系数(“Cronbach’s Alpha Based on Standardized Items”栏)是指用方差为1标化所有条目后计算的Cronbach’s α系数,也称为Spearman-Brown stepped-up reliability coefficient。

4.2 分条目结果

SPSS输出结果如下:

在本研究中,我们将每个条目分成Likert 7级,并分别给每个级别赋值。比如我们给“非常同意”赋值为1,“非常不同意”赋值为7。以Qu20为例,该条目的平均值为3.9238,标准差为1.29695,例数为315。由此可见,Qu20的平均回答接近4,即“不确定(Undecided)”。

汇总各条目后,结果如下:

汇总Qu20-Qu25共6个条目后,均值为20.8000,方差为28.065,标准差为5.29764。当各条目例数一样时,汇总后的平均值就等于各条目均值的直接加和。本研究就属于这种情况。

各条目的取舍情况如下:

前两栏(“Scale Mean if Item Deleted”和“Scale Variance if Item Deleted”)分别是每当剔除一个条目后总条目的均值和方差。仍以Qu20举例,如果剔除该条目,总条目的均值为16.8762,刚好等于20.8000-3.9238,即未剔除该条目前的总均值与该条目均值的差。

每当剔除某一条目后,Cronbach’s α系数的变化如下:

从Cronbach’s Alpha if Item Deleted栏可以看出,当剔除Qu20条目,Cronbach’s α系数从原来的0.823增加至0.838。再如,剔除Qu22条目后,Cronbach’s α系数从原来的0.823降至0.789。

注释:“Cronbach’s Alpha if Item Deleted”栏只标注每次剔除一个条目的情况。如果我们需要考虑同时剔除多个条目的情况,只能重复SPSS操作,逐步进行。

那么,如何判断是否应该剔除某个条目呢?

“Corrected Item-Total Correlation”栏中的数据是指每一个特定条目与其他条目汇总的Pearson相关系数。以Qu20为例,条目Qu20与条目Qu21-25汇总结果的Pearson相关系数为0.394。一般来说,如果该指标小于0.3,我们就认为该条目与其他条目的相关性不强,可以剔除。在本研究中,“Corrected Item-Total Correlation”栏的所有数值都大于0.3,即不需要剔除条目。

注释:如果Pearson相关系数出现负值,可能是由于变量赋值的顺序不同导致的。大家需要根据专业要求对变量重新赋值。

“Squared Multiple Correlation”栏显示的是以某一个特定条目为因变量,其他条目为自变量进行回归的拟合程度,即R2值。该指标认为,如果这些条目可以共同反映某一个潜在因素,他们之间一定可以互相解释。仍以Qu20为例,如果我们以Qu20为因变量,Qu21-25为自变量进行多重线性回归拟合,该回归的R2值为0.188。经验证,结果确实如此:

实际上,我们检验条目之间的一致性,就是希望条目的变异可以互相解释。在本研究中,“Squared Multiple Correlation”栏中Qu20的值为0.188,提示Qu20的变异能被Qu21-25条目解释的比例仅为18.8%。单看这一个指标,我们认为可以考虑剔除Qu20。但综合其他指标的情况,本研究认为应暂时保留Qu20。

5、撰写结论

本研究采用自制问卷测量员工的工作情况。其中,测量员工工作热情的条目有6个,具有较高的内在一致性(Cronbach’s α为0.823)。

参考文献

1. 张文彤主编. SPSS统计分析高级教程.

发表评论 取消回复

要发表评论,您必须先登录。

推荐访问


数据分析交流:数据分析交流
Excel学习: Excel学习交流
Python交流:一起学习Python(数据分
SQL交流:一起学习SQL(数据分析
微博:一起大数据

最新提问

  • SQL Chat
  • sql server 不允许保存更改。您所做的更改要求删除并重新创建以下表。您对无法重新创建的表进行了更改或者启用了”阻止保存要求重新创建表的更改”选项。
  • 偏相关分析
  • 复相关系数
  • 【R语言】熵权法确定权重
  • 如何破解Excel VBA密码
  • 解决 vba 报错:要在64位系统上使用,请检查并更新Declare 语句
  • 基于 HuggingFace Transformer 的统一综合自然语言处理库
  • sqlserver分区表索引
  • Navicat连接数据库后不显示库、表、数据

文章标签

ARIMA CBC Excel GBDT KNN Modeler Mysql pandas PostgreSQL python python数据可视化 R SAS sklearn SPSS SQL SVM Tableau TensorFlow VBA 主成分分析 关联规则 决策树 协同过滤 可视化 因子分析 大数据 大数据分析 推荐系统 数据分析 数据可视化 数据挖掘 数据透视表 文本挖掘 时间序列 机器学习 深度学习 神经网络 结构方程 统计学 联合分析 聚类 聚类分析 逻辑回归 随机森林
©2023 一起大数据-技术文章心得 | Design: Newspaperly WordPress Theme