解释器模式

解释器模式(Interpreter Pattern)给分析对象定义一个语言,并定义该语言的文法表示,再设计一个解析器来解释语言中的句子。也就是说,用编译语言的方式来分析应用中的范例。解释器模式属于行为型模式。这种模式实现了一个表达式接口,该接口解释一个特定的上下文。解释器模式常用于 SQL 解析、符号处理引擎等。

介绍

意图:给定一个语言,定义它的文法表示,并定义一个解释器,这个解释器使用该标识来解释语言中的句子。

主要解决:对于一些固定文法构建一个解释句子的解释器。

何时使用:如果一种特定类型的问题发生的频率足够高,那么可能就值得将该问题的各个范例表述为一个简单语言中的句子。这样就可以构建一个解释器,该解释器通过解释这些句子来解决该问题。

如何解决:构建语法树,定义终结符与非终结符。

关键代码:构建环境类,包含解释器之外的一些全局信息,一般是 HashMap。

应用范例:编译器、运算表达式计算。

优点:

  • 1、扩展性好。由于在解释器模式中使用类来表示语言的文法规则,因此可以通过继承等机制来改变或扩展文法。
  • 2、容易实现。在语法树中的每个表达式节点类都是相似的,所以实现其文法较为容易。

缺点:

  • 1、执行效率较低。解释器模式中通常使用大量的循环和递归调用,当要解释的句子较复杂时,其运行速度很慢,且代码的调试过程也比较麻烦。
  • 2、会引起类膨胀。解释器模式中的每条规则至少需要定义一个类,当包含的文法规则很多时,类的个数将急剧增加,导致系统难以管理与维护。
  • 3、可应用的场景比较少。在软件开发中,需要定义语言文法的应用范例非常少,所以这种模式很少被使用到。

使用场景:

  • 1、可以将一个需要解释执行的语言中的句子表示为一个抽象语法树。
  • 2、一些重复出现的问题可以用一种简单的语言来进行表达。
  • 3、一个简单语法需要解释的场景。

注意事项:可利用场景比较少,JAVA 中如果碰到可以用 expression4J 代替。

实现

我们将创建一个接口 Expression 和实现了 Expression 接口的实体类。定义作为上下文中主要解释器的 TerminalExpression 类。其他的类 OrExpressionAndExpression 用于创建组合式表达式。

InterpreterPatternDemo,我们的演示类使用 Expression 类创建规则和演示表达式的解析。

解释器模式的 UML 图

步骤 1

创建一个表达式接口。

Expression.java

public interface Expression { public boolean interpret(String context); }

步骤 2

创建实现了上述接口的实体类。

TerminalExpression.java

public class TerminalExpression implements Expression { private String data; public TerminalExpression(String data){ this.data = data; } @Override public boolean interpret(String context) { if(context.contains(data)){ return true; } return false; } }

OrExpression.java

public class OrExpression implements Expression { private Expression expr1 = null; private Expression expr2 = null; public OrExpression(Expression expr1, Expression expr2) { this.expr1 = expr1; this.expr2 = expr2; } @Override public boolean interpret(String context) { return expr1.interpret(context) || expr2.interpret(context); } }

AndExpression.java

public class AndExpression implements Expression { private Expression expr1 = null; private Expression expr2 = null; public AndExpression(Expression expr1, Expression expr2) { this.expr1 = expr1; this.expr2 = expr2; } @Override public boolean interpret(String context) { return expr1.interpret(context) && expr2.interpret(context); } }

步骤 3

InterpreterPatternDemo 使用 Expression 类来创建规则,并解析它们。

InterpreterPatternDemo.java

public class InterpreterPatternDemo { //规则:Robert 和 John 是男性 public static Expression getMaleExpression(){ Expression robert = new TerminalExpression("Robert"); Expression john = new TerminalExpression("John"); return new OrExpression(robert, john); } //规则:Julie 是一个已婚的女性 public static Expression getMarriedWomanExpression(){ Expression julie = new TerminalExpression("Julie"); Expression married = new TerminalExpression("Married"); return new AndExpression(julie, married); } public static void main(String[] args) { Expression isMale = getMaleExpression(); Expression isMarriedWoman = getMarriedWomanExpression(); System.out.println("John is male? " + isMale.interpret("John")); System.out.println("Julie is a married women? " + isMarriedWoman.interpret("Married Julie")); } }

步骤 4

执行程序,输出结果:

John is male? true
Julie is a married women? true

提供了一种方法顺序访问一个聚合对象中的所有元素,而又不暴露该聚合对象的内部表示。迭代器模式在各种编程语言中很常见。迭代器模式用于顺序访问集合对象的元素,调用者无需知道集合对象的底层表示,从而实现调用者和聚合对象的解耦。